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Abstract. Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral 

activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many 

studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-

level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal 10 

precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for 

western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, 

where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited 

water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal 

precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill 15 

and resolution, as compared with previous studies.    
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1 Primer on prediction models and cluster analysis 

Seasonal precipitation prediction can provide potentially actionable information to guide management of various sectoral 

activities. For instance, precipitation prediction is often translated into a hydrological forecast, which can be used to optimize 

reservoir operations, provide early flood or drought warning, inform waterway navigation, etc. As a primary input to soil 

moisture, precipitation prediction is also essential to agricultural management – farmers can take advantage of anticipated 5 

preferable climatic conditions or avoid unnecessary costs under expected undesirable conditions. Two types of models are 

commonly used for seasonal precipitation prediction: statistical and dynamical. Dynamical models, such as general circulation 

models (GCMs), include complex physical climate processes, while statistical models are purely data-driven, relating 

observations and hydroclimate variables directly.  

 10 

While both modeling approaches have produced skillful seasonal predictions for a variety of applications (e.g. Barrett, 1993; 

Hammer et al., 2000; Shukla et al., 2016), each has noteworthy drawbacks. Dynamical models often require a significant amount 

of time to build and parameterize, whereas statistical models require considerably fewer resources (e.g. Mutai et al., 1998; 

Gissila et al., 2004; Block and Rajagopalan, 2007; Diro et al., 2008; Diro et al., 2011b; Block and Goddard, 2012). Dynamical 

models also suffer from their high sensitivity to initial uncertain conditions, particularly given a long lead time. Consequently, a 15 

number of simulations are typically produced, each with unique initial conditions, to provide a range of possible outcomes (e.g. 

Roeckner et al., 1996; Anderson et al., 2007). Furthermore, the outputs from dynamical models often require additional bias 

correction, typically using statistical methods, to better match observations (e.g. Ines and Hansen, 2006; Block et al., 2009; 

Teutschbein and Seibert, 2012). Statistical models, on the other hand, are highly dependent on substantial high-quality historical 

data to capture hydroclimatic patterns and signals, particularly extreme conditions, which is often not available. Additionally, 20 

statistical models are often linear by construction, and may not well capture non-linear complex interactions and feedbacks. The 

physical nature of dynamical models, however, allows for prediction under non-stationary conditions, and also when insufficient 

historical data is available, whereas statistical models, by construction, typically rely on stationary relationships (Schepen et al., 

2012).  

 25 

Given these features of both model types for seasonal prediction, many studies have explored the combination of statistical and 

dynamical model outputs (e.g. Coelho et al., 2004; Block and Goddard, 2012; Schepen et al., 2012). In general, the combined 

predictions are typically superior to individual models, however this is not always the case, and is dependent on location, 

predicted seasons, lead time, comparable model skill, etc. (e.g. Metzger et al., 2004). 

 30 

The spatial extent selected for statistical seasonal prediction is critical. It is not uncommon to simply assume homogeneity in 

precipitation across an entire study region; however, this limits addressing potential spatial variability. While this may be 

suitable for very broad regional planning, it is often ineffectual for operational and local-level decisions, particularly for 

locations with high spatial variability. This prompts the need for delineation of sub-regional scale homogeneous regions, often 

defined through cluster analysis. Defining these homogeneous regions, however, is a non-trivial process. There are a variety of 35 

methods to delineate homogeneous regions, including comparing annual cycles (e.g. unimodal and bimodal distributions in 

precipitation) between stations (or grid-cells), comparing station correlations with regional averages, applying empirical 

orthogonal functions (EOF), various clustering techniques, and other methods of increasing complexity (e.g. Parthasarathy et al., 

1993; Mason, 1998; Landman and Mason, 1999; Gissila et al., 2004; Diro et al., 2008; Diro et al., 2011b; Singh et al., 2012). In 

addition, delineation of the sub-region size is also important to consider. Smaller sized homogeneous sub-regions do not 40 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-70, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



3 

 

necessarily lead to improved predictions, as the noise at overly small scales can dominate any real signals representing spatial 

coherency of precipitation. For additional discussion regarding defining homogeneous sub-regions and cluster analysis, the 

reader is referred to Zhang et al. (2016) and Badr et al. (2015).  

2 Application to western Ethiopia and objectives of the study  

Ethiopia is vulnerable to fluctuations in precipitation given its reliance on rain-fed agriculture and limited water resources 5 

infrastructure. The majority of agriculture and infrastructure are in western Ethiopia, where water resources are relatively rich 

compared to other parts of the country (Awulachew et al., 2007). However, precipitation is highly varied temporally and spatially 

in the Kiremt season – the major rainy season spanning June through September (JJAS) – making skillful seasonal predictions 

challenging, particularly at local scales (e.g. Gissila et al., 2004; Block and Rajagopalan, 2007). Operational precipitation 

predictions in Ethiopia have been issued by its National Meteorological Agency (NMA) since 1987 using an analog 10 

methodology (i.e. locating a similar climate scenario in the past – an analog – to predict future conditions), however this 

approach has produced only marginally skillful outcomes (Korecha and Sorteberg, 2013). For NMA’s prediction, the country is 

divided into eight homogeneous regions for which NMA produces independent predictions. Similarly, others have also addressed 

seasonal prediction in Ethiopia contingent on both temporal and spatial precipitation patterns. Gissila et al. (2004) divide 

Ethiopia into four regions conditioned on the seasonal cycle and interannual variability coherence prior to prediction, while Diro 15 

et al. (2009) apply a similar approach but with dynamic cluster boundaries, allowing for different delineations for each rainy 

season. Segele et al. (2015) consider statistical precipitation predictions across Ethiopia as a whole, as well as for northeastern 

Ethiopia and at two Ethiopian cities. Block and Rajagopalan (2007) predict the average summertime (JJAS) precipitation over 

the upper Blue Nile basin – a region they claim is homogenous at inter-annual time scales. Korecha and Barnston (2007) select 

an all-Ethiopia average precipitation index to characterize predictability broadly, with minimal attention to operational-level 20 

predictions. All of these studies focus on predicting regional average precipitation based on subjective clustering methods 

applying a limited number of stations or coarsely gridded data; no local predictions at a finer spatial scale are explored.  

 

This study moves forward by exploring local-level seasonal precipitation prediction through the use of regional-level predictions, 

based on previous cluster analyses over western Ethiopia (Zhang et al., 2016). The advantages of defining homogeneous regions 25 

for seasonal prediction at operational (small) scales will be demonstrated by comparing approaches with and without undertaking 

a cluster analysis a priori. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal 

precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances compared to 

previous studies.  

3 Modeling high-resolution seasonal prediction  30 

To evaluate high-resolution seasonal precipitation prediction comparing with versus without cluster analysis a priori, statistical 

models are developed and compared with bias-corrected dynamical model predictions. Four scenarios are evaluated based on 

two criteria – (1) clustered vs. non-clustered and (2) direct vs. indirect. In the clustered case, predictions are produced for each 

homogeneous region (cluster) given a unique set of predictors. In the non-clustered case, the entire study region is considered as 

one cluster and thus only one set of predictors is utilized for predictions. For the direct case, precipitation is predicted directly at 35 

the local level (grid scale); for the indirect case, the average precipitation within each homogeneous region is predicted first (as 
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an intermediary), and then regressed to local-level (grid scale) predictions. Combinations of the two criteria form four scenarios 

– clustered direct (C-D), non-clustered direct (NC-D), clustered indirect (C-I), and non-clustered indirect (NC-I) predictions.  

3.1 Cluster analysis 

Using a k-means clustering technique, western Ethiopia – the major agricultural region of the country – is divided into eight 

homogeneous regions (Fig. 1), conditioned on the interannual variability of total precipitation in JJAS, the same variable that is 5 

to be predicted. Precipitation is based on a 0.1˚×0.1˚ gridded precipitation dataset from NMA (Dinku et al., 2014), consisting of 

7320 grid-cells across 1983–2011 (29 years). Given the high-resolution gridded dataset, k-means clustering is performed for a 

range of predefined numbers of clusters; the optimal number of clusters is identified by comparing the within-cluster sum of 

square errors (WSS). During the clustering process, each grid-cell is assigned and reassigned to clusters until the WSS is 

minimized. This does not require any subjective delineation or manual delineation of boundaries between clustered stations or 10 

grid-cells; instead, an automated and objective delineation is performed. Readers are referred to Zhang et al. (2016) for more 

details.  

 

Figure 1: Regionalization map of 8 homogeneous regions marked by different colors, with country boundary and river profile. After 
Zhang et al. (2016) 15 

3.2 Statistical modeling approach 

Multiple linear regression (MLR) is favored by many as a statistical modeling approach given its well-developed theory, simple 

model structure, efficient processing, and often skillful outcomes (e.g. Omondi et al., 2013; Camberlin and Philippon, 2002; Diro 

et al., 2008). As mentioned, only a few studies have focused on seasonal precipitation prediction in Ethiopia (Gissila et al., 2004; 

Block and Rajagopalan, 2007; Korecha and Barnston, 2007; Diro et al., 2008; Diro et al., 2011b; Segele et al., 2015), and almost 20 

Data N/A 
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Ethiopia 

Blue Nile 
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all of them include the applications of MLR. This study also applies MLR to predict seasonal precipitation, yet differentiates 

from other studies by applying predictions to pre-defined homogeneous regions and further translating to local-level predictions. 

 

Large-scale climate variables are often evaluated as potential predictors in statistical seasonal precipitation prediction models, 

commonly including sea surface temperatures (SST) in the equatorial Pacific Ocean representing the well-known of the El Nino-5 

Southern Oscillation (ENSO) (Stone et al., 1996). For Ethiopia, the ENSO phenomenon is considered a significant indicator of 

precipitation variability, particularly in the main JJAS rainy season (e.g. NMSA, 1996; Camberlin, 1997; Bekele, 1997; Segele 

and Lamb, 2005; Diro et al., 2011a; Elagib and Elhag, 2011). In addition to ENSO, the effect of Indian Ocean SST and regional 

atmospheric pressure systems such as the St. Helena, Azores, and Mascarene Highs also have notable influence on Ethiopia’s 

precipitation variability (e.g. Kassahun, 1987; Tadesse, 1994; NMSA, 1996; Shanko and Camberlin, 1998; Goddard and Graham, 10 

1999; Latif et al., 1999; Black et al., 2003; Segele and Lamb, 2005). Consequently, season-ahead (March-May) or month-ahead 

(May) large-scale climate variables that are physically relevant in potentially modulating moisture transport to the basin (or 

cluster) are selected as potential predictors. Four climate variables are selected here for further evaluation based on outcomes of 

the aforementioned prediction studies: SST, sea level pressure (SLP), geopotential height (GH) at 500mb, and surface air 

temperature (SAT). All climate variables are from the National Centers for Environmental Prediction and National Center for 15 

Atmospheric Research (NCEP/NCAR) reanalysis dataset (Kalnay et al., 1996) at a 2.5˚×2.5˚ grid scale.  

 

Predictor selection and statistical modeling are developed according to the following five steps – for the region as a whole (non-

clustered) and for each pre-defined cluster (Fig. 2): 

(1) Precipitation observations for JJAS averaged across the region and each cluster are spatially correlated 20 

independently with each global climate variable (e.g. Fig. 3).  

(2) For each spatial correlation, regions with justifiable climatic associations and statistically significant correlations at 

the 95% level are identified and selected (Table 1).  

(3) For each climate variable region selected (Table 1), data within the region are spatially averaged for 1983-2011 

(defined as “pre-predictors”).  25 

(4) Pre-predictors are combined and transformed (for the region or each cluster separately) through principal component 

analysis (PCA; Jolliffe, 2002).  

(5a) The top principal components (PCs) from the PCA are used as predictors – the direct inputs into the MLR model, 

otherwise known as the principal component regression (PCR). For the direct case, PCR is used to directly predict the grid-level 

precipitation; for the indirect case, PCR is used to predict the intermediate cluster-level precipitation. 30 

 (5b) For the indirect case only, cluster-level predictions are regressed to the grid-level.  

 

 

Figure 2: Flow chat of data processing for predictors into the statistical model. Numbers framed by dash lines correspond to the 
procedures listed in the context. Note: pre. – precipitation, t-s – time-series, avg. – average. 35 
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Table 1: Climate Variables (C.V.) in May over different regions for each cluster (C1 ~ C8) and region as a whole (non-cluster) used as predictors, with corresponding correlation 

between the climate variable averaged over the region and the cluster-level JJAS seasonal total precipitation time-series shown (only cells with correlation values shown are used as 
pre-predictors). After Zhang et al. (2016) 

C.V. SST  SLP  GH at 500mb  SAT 
# of pre-

predictors 

Region EP NI SI E/SA  LO EP AH SH MH AM  LO EP AH SH MH AM  LO 
 

C1 -0.46 -0.46 -0.55 -0.48  
  

0.45 0.45 -0.51 
 

 
 

0.52 
    

 0.50 9 

C2 
 

-0.43 -0.51 -0.43  
    

0.58 
 

 
 

0.55 
  

0.50 
 

 
 

6 

C3 
  

-0.58 -0.59  
   

-0.50 
  

 
  

0.57 
   

 
 

4 

C4 
  

-0.60 
 

 
     

-0.58  
  

0.49 
   

 
 

3 

C5 -0.52 0.52 -0.54 0.59  -0.50 0.61 
    

 
 

0.67 0.67 0.54 0.53 
 

 0.67 11 

C6 
 

0.56 
 

-0.51  
 

0.64 
    

 
 

0.66 
 

-0.51 
  

 
 

5 

C7 
 

0.63 -0.59 0.65  
   

0.44 
  

 
  

0.65 0.65 
  

 0.44 7 

C8 
  

-0.44 0.53  -0.46 
 

0.55 
   

 
  

0.63 
   

 0.48 6 

Non-

cluster 
-0.47  -0.47 -0.52   0.47    -0.41    0.54 0.58 0.52   0.52 9 

Note: EP - equatorial Pacific region, NI - North Indian Ocean, SI - South Indian Ocean, E/SA - Equatorial/South Atlantic Ocean 
LO - local region, AH - Azores High, SH - St Helena High, MH - Mascarene High, AM - SW Asian Monsoon 5 
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Figure 3: An example of global correlation map built using the correlations between the cluster-level average JJAS precipitation time-

series (Cluster 5 in this example) and global sea surface temperature (SST) in May during predictor selection process. 

 

PCA is a common approach in climate modeling to reduce the dimensionality of predictors and remove multi-collinearity, while 5 

simultaneously extracting the most dominant signals from the potential predictors, typically reflected in the first few PCs. Since 

PCA is independent of the predictand, retaining the first few PCs as predictors, in lieu of the original variables, also helps to 

reduce artificial prediction skill. A scree test (Jolliffe, 2002) is performed to determine the optimal number of PCs to retain as 

predictors and the amount of variance explained in the predictors.  

 10 

PCR is performed in a “drop-one-year” cross-validation mode to reduce over-fitting effects and therefore avoid overestimation of 

prediction skill. This requires reconstructing the principal components for the dropped year, and then multiplying the coefficient 

estimates with each reconstructed PC respectively in order to obtain the final predicted value for the dropped year (e.g. Block 

and Rajagopalan, 2009; Wilks, 2011). Q-Q plots are evaluated to verify normally distributed residuals (results not included). 

 15 

For the four scenarios, the model structures are quite similar but have subtle differences which could lead to significantly 

different outcomes (Table 2). Under the NC-D (Eq. (1a, b)) and C-D scenarios (Eq. (2a, b)), the time-series of JJAS seasonal 

total precipitation in each grid-cell (i.e. at local level) is used as the direct predictand (Yi,t); however, the NC-D and C-D 

scenarios differ, as the former uses the same predictors (Xt) across all the grid-cells, while the latter uses different predictors 

according to the cluster to which the grid-cell is assigned (Xj,t). In the indirect case, the cluster-level time-series of JJAS seasonal 20 

total precipitation (the time-series averaged over all grid-cells that belong to a given cluster, Ym,t or Yj,t) is first predicted (Eq. (3a, 

b) and (4a, b)). The predicted intermediate product (Ỹm,t or Ỹj,t) is then used as the only regressor in the second step to estimate 

the grid-level precipitation (Ỹi,t or Ỹiϵj,t for every j; Eq. (3c, d) and (4c, d)). Again, for the C-I scenario, predictors in the first step 

are unique for each of the eight clusters and grid-cells within that cluster (Xj,t), while predictors are identical for all grid-cells (Xt) 

under the NC-I scenario.  25 
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Table 2: Equations of linear regression panel models under four scenarios 

 Non-clustered Clustered 

D
ir

ec
t Yi,t = α̃i + β̃iXt + εi,t ...... (1a) Yiϵj,t = α̃i + β̃iXj,t + εi,t ...... (2a) 

Ỹi,t = α̃i + β̃iXt ...... (1b) Ỹiϵj,t = α̃i + β̃iXj,t ...... (2b) 

In
d

ir
e
ct

 

Ym,t = α̃ + β̃Xt + εt ...... (3a) Yj,t = α̃j + β̃jXj,t + εj,t ...... (4a) 

Ỹm,t = α̃ + β̃Xt ...... (3b) Ỹj,t = α̃j + β̃jXj,t ...... (4b) 

Yi,t = η̃i + γ̃iỸm,t + νi,t ...... (3c) Yi∈j,t = η̃i + γ̃iỸj,t + νi,t ...... (4c) 

Ỹi,t = η̃i + γ̃iỸm,t ...... (3d) Ỹi∈j,t = η̃i + γ̃iỸj,t ...... (4d) 

where Y- predictand of JJAS seasonal total precipitation; X- two predictors of top two PCs;  

ε,ν - error terms; Ỹ - predicted values of JJAS seasonal total precipitation; α̃, β̃, η̃, γ̃- estimated coefficients; i- grid-cell index; t- time (year) 
index; j- cluster index; i ∈ j- grid-cell i that belongs to clusterj; m- mean over entire study region that is equivalently the only one cluster. 

3.3 Dynamical modeling approach  5 

The North American Multi-Model Ensemble (NMME; Kirtman et al., 2014) is an experimental multi-model system consisting of 

coupled dynamical models from various modeling centers in North America that includes seasonal predictions. To compare with 

statistical model predictions, NMME JJAS seasonal precipitation predictions (1˚×1˚ grid-cells) are extracted from model 

ensembles that cover the same time period (1983–2011), geographic region (western Ethiopia), and same lead time (predictions 

made on June 1). A subset of 10 NMME models meet these criteria and are retained for further evaluation: (1) COLA-RSMAS-10 

CCSM3, (2) COLA-RSMAS-CCSM4, (3) GFDL-CM2p1, (4) GFDL-CM2p1-are04, (5) GFDL-CM2p5-FLOR-A06, (6) GFDL-

CM2p5-FLOR-B01, (7) IRI-ECHAM-AnomalyCoupled, (8) IRI-ECHAM-DirectCoupled, (9) NASA-GMAO, (10) NCEP-

CFSv2. The names are kept the same as on the International Research Institute for Climate and Society (IRI) data repository 

website. 

 15 

The NMME predictions for each of the 10 models are bias-corrected by applying probability mapping (e.g. Block et al., 2009; 

Teutschbein and Seibert, 2012; Chen et al., 2013), subject to the observational dataset from NMA. This is performed on a grid-

cell by grid-cell basis on standardized data (the NMME dataset is reshaped to 0.1°×0.1° grid-cells to match the observational 

NMA dataset grid-cell size). The basic steps include:  

(1) Fit gamma distributions to time-series from each observed and NMME grid-cell; for NMME this is performed on an 20 

individual model basis using all ensemble members available. (Goodness-of-fit tests indicate gamma distributions are 

appropriate; results not shown). 

(2) Translate gamma distributions into cumulative distribution functions (CDF).  

(3) For any given dynamical model prediction at the grid-cell level, a corrected prediction value is attained by mapping 

from the modeled CDF to the observed CDF and applying the inverse gamma distribution. This is repeated for all grid-cells and 25 

all NMME models. 

 

After correction, the gamma CDF of predictions and observations approximately match (Fig. 4a). Additionally, each ensemble 

still retains its variability over time, though the overall ensemble mean is shifted to closely match observation (Fig. 4b).  
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Figure 4: (a) bias correction of NMME predictions using probability mapping; (b) precipitation time-series from NMME (colored 
lines) before and after correction, compared to observations (black line). Examples are shown for randomly selected six grid-cells.  

3.4 Performance metrics 

Pearson correlations are used to measure the standardized covariance between observations and predictions. Ranked probability 5 

skill scores (RPSS; Wilks, 2011) are also evaluated to determine categorical skill based on probabilistic predictions. Here, the 

data are split into three equal terciles representing below-normal, near-normal, and above-normal conditions. A perfect 

prediction yields an RPSS of 100%, and a prediction with less skill than climatology (long-term averages) yields an RPSS of less 

than zero. Median RPSS values from all 29 years are reported.  

 10 

Overall model superiority is evaluated by Akaike information criterion (AIC), Bayesian information criterion (BIC), and 

generalized cross validation (GCV) scores (Craven and Wahba, 1979; Manning et al., 2008). All metrics reward model 

parsimony by penalizing models with a larger number of predictors. Smaller AIC, BIC and GCV scores are preferred. The 

equations used to calculate AIC, BIC, and GCV, respectively, are given by: 

AIC = N × log (RSS/N) + 2 × K     ...... (5) 15 

BIC = N × log (RSS/N) + log (N) × K    ...... (6) 

GCV = RSS/[N × (1 − K/N)2]     ...... (7) 

where N is the number of years (29 years), K is the number of predictors used in the regression, and RSS is the residual sum of 

squares (equal to the difference between observations and predictions in each year squared, summed over all the years). 

(a) 

(b) 
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4 Results 

4.1 Statistical model predictions 

Using the scree test (Cattell, 1966), the first two PCs are retained as predictors for each cluster for the clustered case, and the first 

three PCs are retained for the non-clustered case. In all cases, the total variance explained by the PCs retained is approximately 

70%. 5 

 

Cluster-level model predictions demonstrate good skill, as most observations fall within the predicted 95% confidence envelope 

(Fig. 5), and strong positive correlations with observations – ranging from 0.68 to 0.84 – are evident across all clusters and the 

non-clustered study region (Table 3). Additionally, all RPSS values are positive, indicating superior prediction skill over 

climatology. Among all clusters, Cluster 5, in agriculturally rich central-northwestern Ethiopia (Fig. 1), performs best, with 10 

correlation and RPSS values of 0.84 and 74.3%, respectively.   

 

Figure 5: cluster-level predictions and observations under C-I and NC-I scenario, with drop-one-year cross-validation. The 95% 

envelope shows the 95% confidence interval constructed using model errors.  
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Table 3: Correlation coefficients (Corr.) and RPSS for predictions (drop-one-year cross-validated) at cluster level compared to 
observations under C-I and NC-I scenario.  

Cluster C1 C2 C3 C4 C5 C6 C7 C8 Non-cluster 

Corr. 0.741 0.695 0.711 0.683 0.838 0.744 0.751 0.699 0.739 

RPSS (%) 45.23 26.04 36.16 19.82 74.30 5.44 51.91 48.21 48.72 

 

At the grid-scale, correlations between predictions and observations are clearly superior for the clustered case versus the non-

clustered case (Fig. 6). Some parts of the region reach a correlation of 0.9, such as central-northwestern Ethiopia, which is 5 

consistent with the region of high cluster-level prediction skill (Cluster 5). The average correlation over all grid-cells is 

approximately 0.51 (direct) and 0.53 (indirect) for clustered predictions, compared to 0.24 (direct) and 0.27 (indirect) for the 

non-clustered predictions (Table 4), although spatial differences are clearly apparent (Fig. 6). In addition to higher average 

correlations, standard deviations of correlations are also lower in the clustered case than in the non-clustered case, indicating a 

more concentrated correlation distribution for these higher values. The percentage of grid-cells with correlations passing the 95% 10 

significance test increases from approximately 30% in the non-clustered case to more than 80% in the clustered case (Table 4).  

 

 

Figure 6: Pearson correlations between grid-level observations and predictions under four scenarios, with the clustering boundary 
delineated roughly in black.  15 
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Table 4: Grid-level Pearson correlation and RPSS statistics  

Statistical Model 

Grid-level correlations Grid-level RPSS 

mean stdev 
significant 

corr % 

mean 

(%) 

stdev 

(%) 

positive 

RPSS % 

NC-D 0.237 0.245 28.1% 5.42 18.46 58.8% 

NC-I 0.272 0.247 32.3% 5.32 17.09 60.7% 

C-D 0.509 0.172 80.8% 19.16 19.18 84.4% 

C-I 0.532 0.146 87.1% 26.47 21.47 90.0% 

Dynamical Model       

(9) NASA-GMAO 0.300 0.149 36.1% 2.32 21.20 54.3% 

(10) NCEP CFSv2 0.310 0.155 37.3% 3.66 16.61 61.0% 

 

Similar findings are evident by evaluating the RPSS. The non-clustered predictions are modestly skillful, particularly for the 

same region of central-northwestern Ethiopia (Fig. 7), with an average RPSS of approximately 5.4% (both direct and indirect) 

over the entire study region, however RPSS values improve nearly fourfold to 19.2% and 26.5% in the clustered case (indirect 5 

and direct, respectively). Additionally, the percentage of grid-cells with positive RPSS values reaches 84.4% - 90.0% in the 

clustered case (Table 4).  

 

 

Figure 7: grid-level RPSS (%) under four scenarios using climate variables as predictors, with the clustering boundary delineated 10 
roughly in black. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-70, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



13 

 

 

At the grid-scale, predictions by the indirect approach generally outperform direct approach predictions, based on AIC, BIC and 

GCV values (Table 5), as well as correlation and RPSS values (Tables 4). Using the predicted cluster-level precipitation to 

predict grid-level precipitation (the indirect case) appears to help reduce the effect of over-fitting and smooth grid-scale noise. 

From another perspective, the results also suggest that precipitation signals at the regional scale are better explained by large-5 

scale climate variables, while at highly localized scales the signal is less evident. Obviously, however, this is dependent on 

cluster size and the degree of spatial coherence within each cluster, as demonstrated in this study. 

Table 5: grid-level AIC, BIC, and GCV value statistics 

Statistical Model 
AIC BIC GCV 

mean stdev mean stdev mean stdev 

NC-D 281.05 17.86 285.15 17.86 2.00E+04 1.46E+04 

NC-I 277.47 17.37 280.20 17.37 1.73E+04 1.20E+04 

C-D 272.79 15.38 276.89 15.38 1.41E+04 7.53E+03 

C-I 270.05 15.33 272.78 15.33 1.27E+04 6.84E+03 

4.2 Dynamical model predictions  

The RPSS values based on the prediction ensembles of each dynamical model improve significantly after bias correction, 10 

however, the median RPSS values over all the grid-cells are still close to zero (Fig. 8). Only two models, NASA-GMAO and 

NCEP-CFSv2, show a positive mean RPSS value (2.32% and 3.66%, respectively; Table 4). These two dynamical models also 

exhibit generally higher grid-level correlations over the study region (averaging 0.30 and 0.31, respectively; Table 4 and Fig. 9), 

as compared with other NMME models. However, their overall prediction performance is still clearly inferior to that of the 

clustered statistical models, as assessed by correlation and RPSS metrics (Table 4). 15 

 

Figure 8: Boxplots of grid-level RPSS (%) for 10 dynamical models from NMME (a) before and (b) after bias correction, labeled with 

the same number as listed in the context. Note: For each box plot, the line inside the box is the median, the box edges represent the 25th 

and 75th percentiles, and the whiskers extend to the most extreme data points not considered outliers (outliers not shown).  
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Figure 9: Pearson correlations between grid-level observations and ensemble mean of bias-corrected predictions for 10 dynamical 
models from NMME, labeled with the same number as listed in the context. Note that the scale ranges from -1 to 1. 

5 Conclusions and discussion  

This study demonstrates the potential for season-ahead large-scale climate information to produce skillful and credible high-5 

resolution precipitation predictions under a clustered indirect approach in western Ethiopia. At the regional scale, the approach 

shows promise, particularly compared to current NMA operational forecasts, which are only moderately more skillful than 

climatology (Korecha and Sorteberg, 2013). The approach adopted here also advances on previous studies (Gissila et al., 2004; 

Block and Rajagopalan, 2007; Korecha and Barnston, 2007; Diro et al., 2011b; Segele et al., 2015) by first applying an objective 

cluster analysis and then conditionally constructing high-resolution predictions. A unique set of predictors is applied to each 10 

cluster, which contributes to superior prediction performance at both cluster and grid levels, as compared with predictions from 

the non-clustered approach. Grid-level prediction under the indirect case also reduces the effect of over-fitting relative to the 

direct case. 

 

Although predictions from the statistical model clustered approach are superior to all dynamical predictions for this study, 15 

improvements in dynamical models continues , and their application to seasonal precipitation prediction is likely to grow (e.g. 

Palmer et al., 2004; Saha et al., 2006; Lim et al., 2009). Multi-model combinations of statistical and dynamical models were also 

investigated for potential improvement of prediction skills through pooling, linear regression, and Bayesian model averaging 

(BMA; Raftery et al., 1997) using the best statistical model (C-I) and two best dynamical models (NASA-GMAO and NCEP-

CFSv2), however, the overall performance was inferior to the single statistical C-I model (results not shown).  20 

 

Even though clustered statistical model predictions are promising overall, it is worth noting that relatively poor prediction 

performance is evident in some locations. One such place is along cluster boundaries, where assignment of grid-cells to one 

cluster versus the neighboring cluster is almost arbitrary, and clearly less certain than grid-cells falling within the central parts of 

33.05˚ E 39.95˚ E 

4.15˚ N 

14.95˚ N 

4.15˚ N 

14.95˚ N 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-70, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 21 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



15 

 

clusters (Fig. 6 and 7). Poor prediction skill is also evident in some of the mountainous regions of the study area, where the 

hydroclimatic processes that produce precipitation are likely driven by orographic and other local factors rather than large-scale 

climate variables. To test the prospects for improving prediction performance by including season-ahead local variables, soil 

moisture and spring rains were investigated; however, no significant improvement was found for the clustered case, and 

correlations actually deteriorate for the direct case. Thus adding local predictors in this case may simply serve to introduce more 5 

noise and encourage over-fitting.  

 

Additional prediction features also warrant future attention, including longer prediction lead times and evaluation of other 

relevant characteristics (e.g. intra-seasonal dry spells, seasonal onset or cessation, etc.). Improving predictive capabilities may 

not be a complete panacea, but it can continue to be an important part of a decisions-maker’s portfolio as they cope with 10 

hydroclimatic variability and its inherent risks.  

6 Data availability 

The National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis 

dataset can be accessed through the National Oceanic & Atmospheric Administration (NOAA) Earth System Research 

Laboratory (ESRL) website (https://www.esrl.noaa.gov/psd/data/reanalysis/). 15 

 

The NMME hindcasts are available through the International Research Institute for Climate and Society (IRI) website 

(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). 

 

The gridded precipitation dataset in western Ethiopia is available upon request from NMA (http://www.ethiomet.gov.et/). 20 
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